
International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-3, Issue-11, Nov- 2016]

https://dx.doi.org/10.22161/ijaers/3.11.28 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 173

Noise Suppression in Images by Median Filter
Dontabhaktuni Jayakumar, Neelapala Saisruthi, Laiphangbam Renita Devi

Assistant professor Department of ECE, Holy Mary Institute of Technology and Science, Hyderabad, India

Abstract— A new and efficient algorithm for high-density
salt and pepper noise removal in images and videos is
proposed. In the transmission of images over channels,
images are corrupted by salt and pepper noise, due to
faulty communications. Salt and Pepper noise is also
referred to as Impulse noise. The objective of filtering is
to remove the impulses so that the noise free image is
fully recovered with minimum signal distortion. Noise
removal can be achieved, by using a number of existing
linear filtering techniques. We will deal with the images
corrupted by salt-and-pepper noise in which the noisy
pixels can take only the maximum or minimum values (i.e.
0 or 255 for 8-bit grayscale images).
Keywords— About five key words in alphabetical order,
separated by comma.

I. INTRODUCTION
1.1 Introduction to project
In image processing it is usually necessary to perform
high degree of noise reduction in an image before
performing higher-level processing steps, such as edge
detection. The median filter is a non-linear digital
filtering technique, often used to remove noise from
images or other signals. The idea is to examine a sample
of the input and decide if it is representative of the signal.
This is performed using a window consisting of an odd
number of samples. The values in the window are sorted
into numerical order; the median value, the sample in the
center of the window, is selected as the output. The oldest
sample is discarded, a new sample acquired, and the
calculation repeats.
Median filtering is a common step in image processing. It
is particularly useful to reduce speckle noise and salt and
pepper noise. Its edge-preserving nature makes it useful
in cases where edge blurring is undesirable Image
synthesis is the process of creating new images from
some form of image description. The kinds of images that
are typically synthesized include as follows.
1.1.1 Noise
In common use, the word noise means unwanted sound or
noise pollution. In electronics noise can refer to the
electronic signal corresponding to acoustic noise (in an
audio system) or the electronic signal corresponding to
the (visual) noise commonly seen as 'snow' on a degraded
television or video image. In signal processing or
computing it can be considered data without meaning that

is, data that is not being used to transmit a signal, but is
simply produced as an unwanted by-product of other
activities. In Information Theory, however, noise is still
considered to be information. In a broader sense, film
grain or even advertisements in web pages can be
considered noise. Noise can block, distort, or change the
meaning of a message in both human and electronic
communication.
In many of these areas, the special case of thermal noise
arises, which sets a fundamental lower limit to what can
be measured or signaled and is related to basic physical
processes at the molecular level described by well-known
simple formulae.
1.1.2 Salt and Pepper Noise
Another common form of noise is data drop-out noise
(commonly referred to as intensity spikes, speckle or salt
and pepper noise). Here, the noise is caused by errors in
the data transmission. The corrupted pixels are either set
to the maximum value (which looks like snow in the
image) or have single bits flipped over. In some cases,
single pixels are set alternatively to zero or to the
maximum value, giving the image a `salt and pepper' like
appearance. Unaffected pixels always remain unchanged.
The noise is usually quantified by the percentage of pixels
which are corrupted.
In the following examples, images have been corrupted
with various kinds and amounts of drop-out noise. In,
pixels have been set to 0 or 255 with probability p=1%. In
pixel bits were flipped with p=3%, and in 5% of the
pixels (whose locations are chosen at random) are set to
the maximum value, producing the snowy appearance.
For this kind of noise, conventional low pass filtering,
e.g. mean filtering or Gaussian smoothing is relatively
unsuccessful because the corrupted pixel value can vary
significantly from the original and therefore the mean can
be significantly different from the true value. Median
filter removes drop-out noise more efficiently and at the
same time preserves the edges and small details in the
image better. Conservative smoothing can be used to
obtain a result which preserves a great deal of high
frequency detail, but is only effective at reducing low
levels of noise.

1.1.3 Median Filter
The Common Names are Median filtering, Rank filtering.
The median filter is normally used to reduce noise in an

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-3, Issue-11, Nov- 2016]

https://dx.doi.org/10.22161/ijaers/3.11.28 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 174

image, somewhat like the mean filter. However, it often
does a better job than the mean filter of preserving useful
detail in the image.
How Median filter works
Like the mean filter, the median filter considers each
pixel in the image in turn and looks at its nearby
neighbours to decide whether or not it is representative of
its surroundings. Instead of simply replacing the pixel
value with the mean of neighbouring pixel values, it
replaces it with the median of those values. The median is
calculated by first sorting all the pixel values from the
surrounding neighbourhood into numerical order and then
replacing the pixel being considered with the middle pixel
value. (If the neighborhood under consideration contains
an even number of pixels, the average of the two middle
pixel values is used.) Figure 1.1 illustrates an example
calculation.

Fig.1.1: Calculating the median value of a pixel

neighborhood.
As can be seen the central pixel value of 150 is rather
unrepresentative of the surrounding pixels and is replaced
with the median value 124. A 3×3 square neighborhood is
used here and larger neighborhoods will produce more
severe smoothing.
1.1.4 Mean Filter
The Common Names are Mean filtering, Smoothing,
Averaging, Box filtering. Mean filtering is a simple,
intuitive and easy to implement method of smoothing
images, i.e. reducing the amount of intensity variation
between one pixel and the next. It is often used to reduce
noise in images.
How mean filter works
The idea of mean filtering is simply to replace each pixel
value in an image with the mean (`average') value of its
neighbours, including itself. This has the effect of
eliminating pixel values which are unrepresentative of
their surroundings. Mean filtering is usually thought of as
a convolution filter. Like other convolutions it is based
around a kernel, which represents the shape and size of
the neighbourhood to be sampled when calculating the
mean. Often a 3×3 square kernel is used, as shown in
Figure 1.1, although larger kernels (e.g. 5×5 squares) can
be used for more severe smoothing. (Note that a small
kernel can be applied more than once in order to produce

a similar - but not identical - effect as a single pass with a
large kernel.)

Fig.1.2: 3×3 averaging kernel often used in mean

filtering
Computing the straightforward convolution of an image
with this kernel carries out the mean filtering process.
1.1.5 Adaptive Median Filter
Comparing with Standard median filtering the Adaptive
median filtering is an advanced method. Which pixels in
an image have been affected by impulse noise can be
determined by using spatial processing. AMF performs in
the image by comparing each pixel with its surrounding
neighbor pixels to classify pixels as noise. The
neighborhood pixel of the size is adjustable, as well as for
the comparison the threshold is adjustable. A pixel is not
structurally aligned with those pixels to which it is
similar, as well as pixel that is Different from a majority
of its neighbors can be treated as impulse noise. The
median pixel value of the pixels in the neighborhood can
be replaced in the place of noise pixels that have passed
the noise labeling test.
1.1.6 Unsymmetric Trimmed Median Filter
In this UTMF, the selected window elements are arranged
in either increasing or decreasing order. Then the pixel
values 0’s and 255’s in the image (i.e., the pixel values
responsible for the salt and pepper noise) are removed
from the image. Then the median value of the remaining
pixels is taken. This median value is used to replace the
noisy pixel. This filter is called trimmed median filter
because the pixel values 0’s and 255’s are removed from
the selected window.
1.1.7 Proposed Algorithm
The proposed Modified Decision Based Unsymmetrical
Trimmed Median Filter (MDBUTMF) algorithm
processes the Corrupted images by first detecting the
impulse noise. The processing pixel is checked whether it
is noisy or noisy free. That is, if the processing pixel lies
between maximum and minimum gray level values then it
is noise free pixel, it is left unchanged. If the processing
pixel takes the maximum or minimum gray level then it is
noisy pixel which is processed by MDBUTMF.

1.2 Introduction to VLSI
1.2.1 Digital Design
Prompted by the development of new types of
sophisticated field-programmable devices (FPDs), the
process of designing digital hardware has changed

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-3, Issue-11, Nov- 2016]

https://dx.doi.org/10.22161/ijaers/3.11.28 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 175

dramatically over the past few years. Unlike previous
generations of technology, in which board-level designs
included large numbers of SSI chips containing basic
gates, virtually every digital design produced today
consists mostly of high-density devices. This applies not
only to custom devices like processors and memory, but
also for logic circuits such as state machine controllers,
counters, registers, and decoders. When such circuits are
destined for high-volume systems they have been
integrated into high-density gate arrays. However, gate
array NRE costs often are too expensive and gate arrays
take too long to manufacture to be viable for prototyping
or other low-volume scenarios. For these reasons, most
prototypes, and also many production designs are now
built using FPD s. The most compelling advantages of
FPDs are instant manufacturing turnaround, low start-up
costs, low financial risk and (since programming is done
by the end user) ease of design changes. The market for
FPDs has grown dramatically over the past decade to the
point where there is now a wide assortment of devices to
choose from. A designer today faces a daunting task to
research different types of chips, understand what they
can best be used for, choose a particular manufacturer’s
product, learn the intricacies of vendor-specific software
and then design the hardware. Not only the sheer number
of FPDs available exacerbates confusion for designers,
but also by the complexity of the more sophisticated
devices. The purpose of this paper is to provide an
overview of the architecture of the various types of FPDs.
The emphasis is on devices with relatively high logic
capacity; all of the most important commercial products
are discussed.
1.2.2 Overview of Commercially Available FPDs
This section provides many examples of commercial FPD
products. SPLDs are first discussed briefly, and then
details are given for all of the most important CPLDs and
FPGAs. The reader who is interested in more details on
the commercial products is encouraged to contact the
manufacturers, or their distributors, for the latest data
sheets.
Commercially Available CPLDs
As stated earlier, CPLDs consist of multiple SPLD-like
blocks on a single chip. However, CPLD products are
much more sophisticated than SPLDs, even at the level of
their basic SPLD-like blocks. In this section, CPLDs are
discussed in detail, first by surveying the available
commercial products and then by discussing the types of
applications for which CPLDs are best suited. Sufficient
details are presented to allow a comparison between the
various competing products, with more attention being
paid to devices that we believe are in more widespread
use than others.
Commercially Available FPGAs

As one of the largest growing segments of the
semiconductor industry, the FPGA market-place is
volatile. As such, the pool of companies involved changes
rapidly and it is somewhat difficult to say which products
will be the most significant when the industry reaches a
stable state. For this reason, and to provide a more
focused discussion, we will not mention all of the FPGA
manufacturers that currently exist, but will instead focus
on those companies whose products are in widespread use
at this time. In describing each device we will list its
capacity, nominally in 2-input NAND gates as given by
the vendor. Gate count is an especially contentious issue
in the FPGA industry, and so the numbers given in this
paper for all manufacturers should not be taken too
seriously. Wags have taken to calling them “dog” gates,
in reference to the traditional ratio between human and
dog years. There are two basic categories of FPGAs on
the market today 1. SRAM-based FPGAs and 2. antifuse-
based FPGAs. In the first category, Xilinx and Altera are
the leading manufacturers in terms of number of users,
with the major competitor being AT&T. For antifuse-
based products, Actel, Quick logic and Cypress, and
Xilinx offer competing products.
1.2.3 Needs for FPGA
Because they offer high speeds and a range of capacities,
FPGAs are useful for a very wide assortment of
applications, from implementing random glue logic to
prototyping small gate arrays. One of the most common
uses in industry at this time, and a strong reason for the
large growth of the FPGA market, is the conversion of
designs that consist of multiple SPLDs into a smaller
number of FPGAs. FPGAs can realize reasonably
complex designs, such as graphics controller, LAN
controllers, UARTs, cache control, and many others. As a
general rule-of-thumb, circuits that can exploit wide
AND/OR gates, and do not need a very large number of
flip-flops are good candidates for implementation in
FPGAs. A significant advantage of FPGAs is that they
provide simple design changes through re-programming
(all commercial FPGA products are re-programmable).
Within system programmable FPGAs it is even possible
to re-configure hardware (an example might be to change
a protocol for a communications circuit) without power-
down.
Designs often partition naturally into the SPLD-like
blocks in a FPGA. The result is more predictable speed-
performance than would be the case if a design were split
into many small pieces and then those pieces were
mapped into different areas of the chip. Predictability of
circuit implementation is one of the strongest advantages
of FPGA architectures.

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-3, Issue-11, Nov- 2016]

https://dx.doi.org/10.22161/ijaers/3.11.28 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 176

II. LITERATURE SURVEY
In this section, we have gone through detail literature
reviews of impulse noise removal on the reported recent
articles and critically studied their performances through
computer simulation. In traditional median filtering called
standard median filter (SMF), the filtering operation is
performed across to each pixel without considering
whether it is uncorrupted. So, the image details,
contributed by the uncorrupted pixels are also subjected
to filtering and as a result the image details are lost in the
restored version. To overcome this problem, an impulse
noise detection mechanism is applied prior to the image
filtering. A Dynamic Adaptive Median Filter (DAMF)
was proposed for removing high density salt and pepper
noise. The filter is dynamic in nature as it decides the
window size for the test pixel locally before filtering
during run time and is adaptive due to the selection of a
proper window size. The progressive switching median
filter (PSMF) was proposed which achieves the detection
and removal of impulse noise in two separate stages. In
first stage, it applies impulse detector and then the noise
filter is applied progressively in iterative manners in
second stage. In this method, impulse pixels located in the
middle of large noise blotches can also be properly
detected and filtered. The performance of this method is
not good for very highly corrupted image.
Nonlinear filters such as adaptive median filter (AMF)
can be used for discriminating corrupted and uncorrupted
pixels and then apply the filtering technique. Noisy pixels
will be replaced by the median value, and uncorrupted
pixels will be left unchanged. An efficient decision-based
algorithm (DBA) was proposed using a fixed window size
of , where the corrupted pixels are replaced by either the
median pixel or neighborhood pixels. It shows promising
results, a smooth transition between the pixels is lost with
lower processing time which degrades the visual quality
of the image.
A novel improved median filtering (NIMF) algorithm is
proposed for removal of highly corrupted with salt-and-
pepper noise from images. Firstly all the pixels are
classified into signal pixels and noisy pixels by using the
Max-Min noise detector. The noisy pixels are then
separated into three classes, which are low-density,
moderate density, and high-density noises, based on the
local statistic information. Finally, the weighted 8-
neighborhoodsimilarity function filter, the median filter
and the 4-neighborhood mean filter are adopted to remove
the noises for the low, moderate and high level cases,
respectively.
A Tolerance based Arithmetic Mean Filtering Technique
(TSAMFT) is proposed to remove salt and pepper noise
from corrupted images. Arithmetic Mean filtering
technique is modified by the introduction of two

additional features. In the first phase, to calculate the
Arithmetic Mean, only the unaffected pixels are
considered. In the second phase, a Tolerance value has
been used for the replacement of the pixels. This
proposed technique provides much better results than that
of the existing mean and median filtering techniques.
A modified decision based unsymmetrical trimmed
median filter (MDBUTMF) algorithm is proposed for the
restoration of gray scale, and color images that are highly
corrupted by salt and pepper noise. The proposed
algorithm replaces the noisy pixel by trimmed median
value when other pixel values, 0’s and 255’s are present
in the selected window and when all the pixel values are
0’s and 255’s then the noise pixel is replaced by mean
value of all the elements present in the selected window.
When this algorithm tested against different gray scale
and color images, it gives better Peak Signal-to-Noise
Ratio (PSNR) and Image Enhancement Factor (IEF).
Existing System
Median filters are known for their capability to remove
impulse noise without damaging the edges i.e., to
preserve the edges. The main drawback of a standard
median filter (SMF) is that it is effective only for low
noise densities. At high noise densities, SMFs often
exhibit blurring for large window sizes.
Proposed System
Adaptive Median is a “decision-based” filter known as
(MDBUT median filter) that first identifies possible noisy
pixels and then replaces them using the median filter or
its variants, while leaving all other pixels unchanged. This
filter is good at detecting noise even at a high noise level.

III. SOFTWARE AND HARDWARE DESIGN
3.1 Introduction
Digital images play a very important part both in
applications such as television magnetic resonance
imaging computer tomography as well as in field of
science and technology such as geographical information
system and astronomy. Sets of data collected by image
sensors and other devices are generally contaminated by
noise .Also noise can introduced due to transmission
errors and compression. Hence denoising is often a
necessary and first step to be performed before image
data is analyzed and processed. An efficient denoising
technique must be applied to compensate for such data
corruption. Noise is generally modeled as Gaussian noise
(Normal), Uniform noise and Impulse noise (salt and
pepper noise). The impulse noise is of two types, Fixed
valued and random valued. The fixed valued impulse
noise is also known as salt and pepper noise which can
have value either 0 or 255. Here 0 represent complete
black and 255 represent complete white on gray scale
image. The random valued impulse noise can have any

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-3, Issue-11, Nov- 2016]

https://dx.doi.org/10.22161/ijaers/3.11.28 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 177

value between 0 and 255; hence its removal is very
important and difficult. Image de-noising is an important
pre-processing step for image analysis. It refers to the task
of recovering a good estimate of the true image from a
degraded observation without altering and changing
useful structure in the image such as discontinuities and
edges. Image denoising still remains an important
challenge for researchers because denoising process
removes noise but introduces artifacts and also causes
blurring.
Several nonlinear filters have been proposed for
restoration of images contaminated by salt and pepper
noise. Among these standard median filter has been
established as reliable method to remove the salt and
pepper noise without damaging the edge details.
However, the major drawback of standard Median Filter
(MF) is that the filter is effective only at low noise
densities. When the noise level is over 50% the edge
details of the original image will not be preserved by
standard median filter. Adaptive Median Filter (AMF)
performs well at low noise densities. But at high noise
densities the window size has to be increased which may
lead to blurring the image. In switching median filter, the
decision is based on a pre-defined threshold value. The
major drawback of this method is that defining a robust
decision is difficult. Also these filters will not take into
account the local features. As a result of which details and
edges may not be recovered satisfactorily, especially
when the noise level is high.
To overcome the above drawback, Decision Based
Algorithm (DBA) is proposed. In this, image is de noised
by using a window. If the processing pixel value is 0 or
255 it is processed or else it is left unchanged. At high
noise density the median value will be 0 or 255 which is
noisy. In such case, neighboring pixel is used for
replacement. This repeated replacement of neighboring
pixel produces streaking effect. In order to avoid this
drawback, Decision Based Un symmetric Trimmed
Median Filter (DBUTMF) is proposed. At high noise
densities, if the selected window contains all 0’s or 255’s
or both then, trimmed median value cannot be obtained.
So this algorithm does not give better results at very high
noise density that is at 80% to 90%. The proposed
Modified Decision Based Unsymmetric Trimmed Median
Filter (MDBUTMF) algorithm removes this drawback at
high noise density and gives better Peak Signal-to-Noise
Ratio (PSNR) and Image Enhancement Factor (IEF)
values than the existing algorithm.
The proposed Modified Decision Based Unsymmetric
Trimmed Median Filter (MDBUTMF) algorithm
processes the corrupted images by first detecting the
impulse noise. The processing pixel is checked whether it
is noisy or noisy free. That is, if the processing pixel lies

between maximum and minimum gray level values then it
is noise free pixel, it is left unchanged. If the processing
pixel takes the maximum or minimum gray level then it is
noisy pixel which is processed by MDBUTMF. In many
practical cases of image processing, only a noisy image is
available. This circumstance is known as the blind
condition. Many denoising methods usually require the
exact value of the noise distribution as an essential filter
parameter. So, the noise estimation methods in the spatial
domain use the variance or standard deviation to estimate
the actual added noise distribution. But it is found that the
mean deviation provides better results than the variance
or standard deviation to estimate the noise distribution.
The advantage of this approach is that the mean deviation
is actually more efficient than the standard deviation in
practical situations. The standard deviation emphasizes a
larger deviation; squaring the values makes each unit of
distance from the mean exponentially (rather than
additively) larger. The larger deviation will cause
overestimation or underestimation of the noise. So, we
assume that use of the mean deviation may contribute to
more accurate noise estimation. Keeping these points in
view, the authors have used the mean deviation parameter
in deciding the noise pixel and replaced the central pixel
by its mean deviation instead of its mean. The steps in the
proposed MDBUTMF algorithm are given below.
3.2 Algorithm
Step 1 The MDBUTM Filter selects a 2D-window of
size 3×3. The center pixel in the selected window is the
processing pixel and it is denoted as Pij . It is given in
Fig.3.1. The neighboring pixels of the processing pixel
are present in the directions NW, N, NE, W, E, SW, S,
and SE. The positions of these directions are (i-1,j-1), (i-
1,j), (i-1,j+1), (i,j-1), (i,j+1), (i+1,j-1), (i+1,j) and
(i+1,j+1) respectively. The directions are clearly
mentioned in the following Fig.3.1. The X-axis is
considered for ‘i’ and Y-axis is considered for ‘j’.

Fig.3.1: Pixel 2D-window of size 3×3

Step 2 If then is an uncorrupted pixel and its value is
left unchanged.
Step 3 If or then is a corrupted pixel then two cases are
possible as given in Case i) and ii).
Case i) If the selected window contains all the elements
as 0’s and 255’s. Then replacewith the mean of the
element of window.
Case ii) If the selected window contains not all elements
as 0’s and 255’s. Then eliminate255’s and 0’s and find

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-3, Issue-11, Nov- 2016]

https://dx.doi.org/10.22161/ijaers/3.11.28 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 178

the median value of the remaining elements. Replace with
the median value.
Step 4 Repeat steps 1 to 3 until all the pixels in the
entire image is processed.
The pictorial representation of each case of the proposed
algorithm is shown in below flow chart.Each and every
pixel of the image is checked for the presence of salt and
pepper noise. Different cases are illustrated below. If the
processing pixel is noisy and all other pixel values are
either 0’s or 255’s is illustrated in Case i). If the
processing pixel is noisy pixel that is 0 or 255 is
illustrated in Case ii). If the processing pixel is not noisy
pixel and its value lies between 0 and 255 is illustrated in
Case iii).
Case i) If the selected window contains salt/pepper noise
as processing pixel (i.e., 255/0 pixel value) and
neighboring pixel values contains all pixels that adds salt
and pepper noise to the image
where “255” is processing pixel, i.e., .
Since all the elements surrounding are 0’s and 255’s.If
one takes the median value it will be either 0 or 255
which is again noisy. To solve this problem, the mean of
the selected window is found and the processing pixel is
replaced by the mean value. Here the mean value is 170.
Replace the processing pixel by 170.
Case ii) If the selected window contains salt or pepper
noise as processing pixel (i.e., 255/0 pixel value) and
neighboring pixel values contains some pixels that adds
salt (i.e., 255 pixel value) and pepper noise to the image
 where “0” is processing pixel, i.e., .
Now eliminate the salt and pepper noise from the selected
window. That is, elimination of 0’s and 255’s. The 1-D
array of the above matrix is [78 90 0 120 0 255 97 255
73]. After elimination of 0’s and 255’s the pixel values in
the selected window will be [78 90 120 97 73]. Here the
median value is 90. Hence, replace the processing pixel
by 90.
Case iii) If the selected window contains a noise free
pixel as a processing pixel, it does not require further
processing. For example, if the processing pixel is 90 then
it is noise free pixel
 where “90” is processing pixel, i.e., .
Since “90” is a noise free pixel it does not require further
processing.

Process Flow Chart of MDBUTMF
In this process we consider 0 to 15 values as 0 i.e papper
noise and 230 to 255 values as 255 i.e salt noise.

Fig.3.2: Flow chart of MDBUTMF

The above figure 3.2 indicates flow chart of MDBUTMF.
It represents the process flow of a MDBUTMF and the
process steps as shown below.
Step 1 Read a Noisy image.
Step 2 Check the each pixel value (P(i,j)) is in between 0
to 255 or not.
Step 3 If the pixel value is in between 0 to 255 then we
consider it as a de noise value so we can take this as
output.
 Step 4 If the pixel value is 0 or 255 then select a 2D 3*3
window and keep that pixel value in center of the window
and take the neighbor values also.
Step 5 we can check the number of 0’s and number of
255’s in that window.
Step 6 Check if the number of 0’s or 255’s are greater
than 4 then we have to calculate Mean value by taking all
pixel values from that window and keep that mean value
in center and we consider it as a de noise value.
Step 7 Check if the number of 0’s or 255’s are less than
4 then we have to calculate Median value by taking all
pixel values from that window and keep that median
value in center and we consider it as a de noise value.
Step 8 Repeat the process from Step 2 to Step 7 for each
pixel in a noisy image and take the output pixel values
3.3 Block Diagram
 The below figure 3.3 represents the block
diagram of Noise removal and its having main parameters
Input Noisy Image, Xilinx Platform Studio, FPGA and
Visual Basic.

Fig.3.3: Block Diagram of Noise removal

• Input Noise Image block contains Noisy image
and applied to Xilinx Platform Studio.

• We should upload header file of an image in
Xilinx Platform Studio and we can write the

International Journal of Advanced Engineering Research and Science (IJAERS)

https://dx.doi.org/10.22161/ijaers/3.11.2

www.ijaers.com

code for removing the noise in System C
Language.

• Now we can dump these program to
processor through JTAG cable.

• FPGA Processor do the preprocessing and gives
the output i.e de noisy image to the Visual Basic
through serial communication by using RS232
cable.

• In the Visual Basic we can see the input and
output images along with the
pixel values.

Internal Process of Noise removal
The above figure 3.4 represents internal process of noise
removal and the process as follows.

Fig.3.4: Internal Process of Noise removal

• Take the input noisy image. The image having
three individual values for R,G and B.

• So we need to convert this RGB value to Gray
value because its having only one value and we
easily process by single value.

• After that we need to do pixel classification so
we came to know noisy pixel values and de
noisy pixel value.

• We can apply the noisy pixel value to MDBUT
Filter, It process the noisy pixel value and give
the de noisy pixel value.

• We can take de noisy pixel value and consider it
as output. We consider these de noisy pixel
values as output image.

3.4 Design
There are different ways to include processors inside
Xilinx FPGA for System-on-a-Chip (SoC) PowerPC hard
processor core, or Xilinx MicroBlaze soft processor core,
or user-defined soft processor core in VHDL/Verilog. In
this work, The 32-bit MicroBlaze processor is chosen
because of the flexibility. The user can tailor the
processor with or without advance features, based on the
budget of hardware. The advance features include
memory management unit, floating processing unit,
hardware multiplier, hardware divider, instruction and
data cache links etc. The architecture overview of the
system is shown in Figure 2. It can be seen that there are
two different buses (i.e., processor local bus (PLB) and

nternational Journal of Advanced Engineering Research and Science (IJAERS)

https://dx.doi.org/10.22161/ijaers/3.11.28 ISSN: 2349

code for removing the noise in System C

Now we can dump these program to FPGA

FPGA Processor do the preprocessing and gives
the output i.e de noisy image to the Visual Basic
through serial communication by using RS232

In the Visual Basic we can see the input and
output images along with the corresponding

The above figure 3.4 represents internal process of noise

Internal Process of Noise removal

Take the input noisy image. The image having
individual values for R,G and B.

So we need to convert this RGB value to Gray
value because its having only one value and we

After that we need to do pixel classification so
we came to know noisy pixel values and de

We can apply the noisy pixel value to MDBUT
Filter, It process the noisy pixel value and give

We can take de noisy pixel value and consider it
as output. We consider these de noisy pixel

There are different ways to include processors inside
Chip (SoC) PowerPC hard

processor core, or Xilinx MicroBlaze soft processor core,
defined soft processor core in VHDL/Verilog. In

e processor is chosen
because of the flexibility. The user can tailor the
processor with or without advance features, based on the
budget of hardware. The advance features include
memory management unit, floating processing unit,

are divider, instruction and
data cache links etc. The architecture overview of the
system is shown in Figure 2. It can be seen that there are
two different buses (i.e., processor local bus (PLB) and

fast simplex link (FSL bus) used in the system [5
follows IBM core connect bus architecture, which
supports high bandwidth master and slave devices,
provides up to 128- bit data bus, up to 64
and centralized bus Arbitration. It is a type of shared bus.
Besides the access overhead, PLB po
of hardware/software incoherent due to bus arbitration.
On the other hand, FSL supports point
unidirectional communication. A pair of FSL buses (from
processor to peripheral and from peripheral to processor)
can form a dedicated high speed bus without arbitration
mechanism. Xilinx provides C and assembly language
support for easy access. Therefore, most of peripherals
are connected to the processor through PLB; the DWT
coprocessor is connected through FSL instead.

Fig.3.5: System Overview

The current system offers several methods for distributing
the data. These methods are a UART, and VGA, and
Ethernet controllers. The UART is used for providing an
interface to a host computer, allowing user
with the system and facilitating data transfer. The VGA
core produces a standalone real
Ethernet connection allows a convenient way to export
the data for use and analysis on other systems. In our
work, to validate the DWT cop
stream is formed using VISUAL BASIC, then transmitted
from the host computer to FPGA board through UART
port.
In terms of its instruction-set architecture, MicroBlaze is
very similar to the RISC
described in a popular computer architecture book
by Patterson and Hennessy. With few exceptions, the
MicroBlaze can issue a new instruction every cycle,
maintaining single-cycle throughput under most
circumstances.
The MicroBlaze has a versatile interconnect system to
support a variety of embedded applications. MicroBlaze's
primary I/O bus, the Core Connect
traditional system-memory mapped transaction bus with
master/slave capability. A newer version of the
MicroBlaze, supported in both Spartan
implementations, as well as the 7

 [Vol-3, Issue-11, Nov- 2016]

ISSN: 2349-6495(P) | 2456-1908(O)

 Page | 179

fast simplex link (FSL bus) used in the system [5-6]. PLB
follows IBM core connect bus architecture, which
supports high bandwidth master and slave devices,

bit data bus, up to 64-bit address bus
and centralized bus Arbitration. It is a type of shared bus.
Besides the access overhead, PLB potentially has the risk
of hardware/software incoherent due to bus arbitration.
On the other hand, FSL supports point-to-point
unidirectional communication. A pair of FSL buses (from
processor to peripheral and from peripheral to processor)

ated high speed bus without arbitration
mechanism. Xilinx provides C and assembly language
support for easy access. Therefore, most of peripherals
are connected to the processor through PLB; the DWT
coprocessor is connected through FSL instead.

System Overview

The current system offers several methods for distributing
the data. These methods are a UART, and VGA, and
Ethernet controllers. The UART is used for providing an
interface to a host computer, allowing user interaction
with the system and facilitating data transfer. The VGA
core produces a standalone real-time display. The
Ethernet connection allows a convenient way to export
the data for use and analysis on other systems. In our
work, to validate the DWT coprocessor, an image data
stream is formed using VISUAL BASIC, then transmitted
from the host computer to FPGA board through UART

set architecture, MicroBlaze is
RISC-based DLX architecture

described in a popular computer architecture book
. With few exceptions, the

MicroBlaze can issue a new instruction every cycle,
cycle throughput under most

The MicroBlaze has a versatile interconnect system to
support a variety of embedded applications. MicroBlaze's

Core Connect PLB bus, is a
memory mapped transaction bus with

master/slave capability. A newer version of the
MicroBlaze, supported in both Spartan-6 and Virtex-6
implementations, as well as the 7-Series, supports the

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-3, Issue-11, Nov- 2016]

https://dx.doi.org/10.22161/ijaers/3.11.28 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 180

AXI specification. The majority of vendor-supplied and
third-party IP interface to PLB directly (or through an
PLB to OPB bus bridge.) For access to local-memory
(FPGA BRAM), MicroBlaze uses a dedicated LMB bus,
which reduces loading on the other buses. User-defined
coprocessors are supported through a dedicated FIFO-
style connection called FSL (Fast Simplex Link). The
coprocessor(s) interface can accelerate computationally
intensive algorithms by offloading parts or the entirety of
the computation to a user-designed hardware module.

IV. SOFTWARE AND HARDWARE

SPECIFICATIONS
4.1 Software Specifications

1. XILINX Platform Studio
2. MATLAB
3. Visual Basic

4.1.1 XILINX Platform Studio
The Xilinx Platform Studio (XPS) is the development
environment or GUI used for designing the hardware
portion of your embedded processor system. Xilinx
Embedded Development Kit (EDK) is an integrated
software tool suite for developing embedded systems with
Xilinx MicroBlaze and PowerPC CPUs. EDK includes a
variety of tools and applications to assist the designer to
develop an embedded system right from the hardware
creation to final implementation of the system on an
FPGA. System design consists of the creation of the
hardware and software components of the embedded
processor system and the creation of a verification
component is optional.
A Typical embedded system design project involves
hardware platform creation, hardware platform
verification (simulation), software platform creation,
software application creation, and software verification.
Base System Builder is the wizard that is used to
automatically generate a hardware platform according to
the user specifications that is defined by the MHS
(Microprocessor Hardware Specification) file. The MHS
file defines the system architecture, peripherals and
embedded processors]. The Platform Generation tool
creates the hardware platform using the MHS file as
input. The software plat defined by MSS (Microprocessor
Software Specification) file which defines driver and
library customization parameters for peripherals,
processor customization parameters, standard 110
devices, interrupt handler routines, and other software
related routines. The MSS file is an input to the Library
Generator tool for customization of drivers, libraries and
interrupts handlers.
Algorithm Mapping
The FPGA implementation is divided into blocks, each
block implementing a separate portion of the algorithm.

This approach allowed for concurrent development and
for testing of individual blocks. The inbuilt finite state
machine (FSM) controls each block. In addition, a high-
level FSM controls the interaction of the blocks. Each
computational block is implemented in C and checked for
proper functionality with simulators (ISE Simulator) The
Algorithm primarily consists on mapping low-level
operations like local filters. Conceptually, each pixel in
the output image is produced by sliding an N×N window
over the input image and computing an operation
according to the input pixels under the window and the
chosen window operator. The result is a pixel value that is
assigned to the center of the window in the output image
as shown below in Figure 4.4.

Fig.4.5: Mapping the window operation

For processing purposes, the straightforward approach is
to store the entire input image into a frame buffer,
accessing the neighborhood pixels and applying the
function as needed to produce the output image. If
processing of the video stream is required N×N pixel
values are needed to perform the calculations each time
the window is moved and each pixel in the image is read
up to N×N times. Memory bandwidth constraints make
obtaining all these pixels each clock cycle impossible.
Input data from the previous N-1 rows can be cached
using a shift register (or circular memory buffer) for when
the window is scanned along subsequent lines.
Instead of sliding the window across the image, the above
implementation now feeds the image through the window.
Introducing the row buffer data structures adds additional
complications. With the use of both caching and
pipelining there needs to be a mechanism for adding to
the row buffer and for flushing the pipeline. This is
required when operating on video data, due to the
horizontal blanking between lines and the vertical
blanking between frames. If either the buffer or the
pipeline operated during the blanking periods the results
for following pixels would be incorrect due to invalid
data being written to them. This requires us to stop
entering data into the row buffers and to stall the pipeline
while a blanking period occurs.

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-3, Issue-11, Nov- 2016]

https://dx.doi.org/10.22161/ijaers/3.11.28 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 181

A better option is to replicate the edge pixels of the
closest border. Such image padding can be considered as
a special case of pipeline priming. When a new frame is
received the first line is pre-loaded into the row buffer the
required number of times for the given window size.
Before processing a new row the first pixels are also pre-
loaded the required number of times, as is the last pixel of
the line and the last line with the implementation of the
Row Buffers for Window Operations.
Memory Interfacing and C Compiler
Because the Spartan 3E FPGA that is used in the design
does not have enough internal RAM for image storage,
the processing blocks were interfaced with five on-board
256K×36-bit pipelined DDRAM devices. To reduce the
hardware computation time, each sub-block can read and
write within the same clock cycle; each sub-block was
connected to two memory chips while active. Typically, a
computational block reads its inputs from one memory
and writes its outputs to another. It is also necessary to
control/arbitrate the FPGA internal block RAM, which is
used for storage of computed thresholds and other
parameters. The memory interface provides the
computational blocks with a common interface and hides
some of the complex details.
 C Compiler
Xilinx MicroBlaze Processor Supports Linux and C-to-
FPGA Acceleration embedded systems can be developed
to create hardware accelerated, single-chip applications
that take advantage of the MicroBlaze processor features
and C-to-hardware acceleration for complex,
performance-critical applications. The addition of
memory management to the MicroBlaze processor
provides embedded systems designers with a powerful
new alternative for hardware-accelerated embedded
systems. By offloading critical C-language processes to
dedicated hardware coprocessors, the system as a whole
can operate at a slower clock speed, consume less power
and yet provide vastly more processing performance than
would be possible using a discrete processor.
Using the automated C-to-hardware compiler tools and
interactive optimizers, performance gains well in excess
of 100X over software-only approaches, in applications
that include image processing, DSP and secure
communications have been reported. The MicroBlaze
configurable soft processor includes configurable
coprocessor capabilities through its high-performance
Fast Simplex Link (FSL) accelerator interface. The
compiler automatically parallelizes and pipelines C-
language algorithm and generates FSL interfaces, with
little or no need for hardware design experience or
hardware description language (HDL) coding. The
automatic C-to-HDL capabilities of MicroBlaze
dramatically accelerate system design.

Program Files
Input Files
1. MHS File
The Microprocessor Hardware Specification (MHS) file
defines the hardware component. The MHS file serves as
an input to the Platform Generator (Platgen) tool. An
MHS file defines the configuration of the embedded
processor system, and includes the following

• Bus architecture
• Peripherals
• Processor
• System Connectivity

2. MSS File
The Microprocessor Software Specification (MSS) is
used as an input file to the Library Generator (Libgen).
The MSS file contains directives for customizing OSs,
libraries, and drivers.
3. UCF File
The User Constraints File (UCF) specifies timing and
placement constraints for the FPGA Design.
Output Files
1. Block Memory Map
A BMM file is a text file that has syntactic descriptions of
how individual Block RAMs constitute a contiguous
logical data space. When updating the FPGA bitstream
with memory initialization data, the Data2Mem utility
uses the BMM file to direct the translation of data into the
proper initialization form. This file is generated by the
Platform Generator (Platgen) and updated with physical
location information by the Bitstream Generator tool.
2. ELF File
The Executable and Linkable Format (ELF) is a common
standard in computing. An executable or executable file,
in computer science, is a file whose contents are meant to
be interpreted as a program by a computer. Most often,
they contain the binary representation of machine
instructions of a specific processor, but can also contain
an intermediate form that requires the services of an
interpreter to be run.

V. SOFTWARE TESTING AND RESULTS
5.1 Image to Text Conversion
The below process indicates image to header file
conversion and each step as shown in the below.
Step 1 The below figure 5.1 indicates the Creation of
main page for image browsing and header file. Here we
can create two rectangle boxes foe image browsing and
header file creation and take one square box also for
displaying the selected image.

International Journal of Advanced Engineering Research and Science (IJAERS)

https://dx.doi.org/10.22161/ijaers/3.11.2

www.ijaers.com

Fig.5.1 : Creation of main page for image
header file

Step2 The below figure 5.2 indicates browse an image
from the location where the image is existing. By clicking
on browse button we can open an image.

Fig.5.2: Browse an Image

Step3 Figure 5.3 indicates showing a selected
After browsing an image its displayed on the square box
in main page.

Fig.5.3: Showing a selected image

Step4 The below figure 5.3 indicates the Header file
creation. After selecting the image we can click on the
create header file button then it will create header file for
that image and showing one dialog box saying that file
created successfully after that we need to click on OK
button which is showing in dialog box.

Fig.5.4: Header file creation
Step5 The below figure 5.5 indicates showing p
values of a selected image. Its represents individual pixel
value of an image.

nternational Journal of Advanced Engineering Research and Science (IJAERS)

https://dx.doi.org/10.22161/ijaers/3.11.28 ISSN: 2349

5.1 : Creation of main page for image browsing and

The below figure 5.2 indicates browse an image
from the location where the image is existing. By clicking

Z
Browse an Image

indicates showing a selected image.
After browsing an image its displayed on the square box

5.3: Showing a selected image

The below figure 5.3 indicates the Header file
creation. After selecting the image we can click on the

will create header file for
that image and showing one dialog box saying that file
created successfully after that we need to click on OK

Header file creation

The below figure 5.5 indicates showing pixel
values of a selected image. Its represents individual pixel

Fig.5.5: Showing pixel values of a selected image
5.2 Simulation Results
Experiments are performed on gray level images to verify
the proposed method. These images are
bits/pixel and size is 128 x 128. Image used for
experiments are shown in below figure 5.6.

Fig.5.6: Input image

The above figure 5.6 represents input noisy along with
pixel values and the below figure 5.7 indi
image along with pixel values.The measurands used for
proposed method are as follows
The entropy (E) is defined as where s is the set of
processed coefficients and p (e) is the probability of
processed coefficients. By using entropy, number o
required for compressed image is calculated. An often
used global objective quality measure is the mean square
error (MSE) defined as Where, nxm is the number of total
pixels. p(i,j) and p(i,j)’ are the pixel values in the original
and reconstructed image.

Fig.5.7: Output image

The synthesis report is below
The above figure 5.8 represents Synthesis report having
the information about how many registers we are using
and number of inputs etc.The Quantitative performance of
the proposed algorithm is evaluated based on Peak signal
to noise ratio (PSNR) ,Mean Squa
Image Enhancement Factor (IEF) which is given in
equations 1 and 2 respectively.

 [Vol-3, Issue-11, Nov- 2016]

ISSN: 2349-6495(P) | 2456-1908(O)

 Page | 182

Showing pixel values of a selected image

Experiments are performed on gray level images to verify
the proposed method. These images are represented by 8
bits/pixel and size is 128 x 128. Image used for
experiments are shown in below figure 5.6.

Input image

The above figure 5.6 represents input noisy along with
pixel values and the below figure 5.7 indicates output
image along with pixel values.The measurands used for
proposed method are as follows
The entropy (E) is defined as where s is the set of
processed coefficients and p (e) is the probability of
processed coefficients. By using entropy, number of bits
required for compressed image is calculated. An often
used global objective quality measure is the mean square
error (MSE) defined as Where, nxm is the number of total
pixels. p(i,j) and p(i,j)’ are the pixel values in the original

Output image

The synthesis report is below
The above figure 5.8 represents Synthesis report having
the information about how many registers we are using
and number of inputs etc.The Quantitative performance of
the proposed algorithm is evaluated based on Peak signal
to noise ratio (PSNR) ,Mean Square Error (MSE) and
Image Enhancement Factor (IEF) which is given in
equations 1 and 2 respectively.

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-3, Issue-11, Nov- 2016]

https://dx.doi.org/10.22161/ijaers/3.11.28 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 183

…. (1)
Where

 … (2)
Where x refers to Original image, R denotes restored

image, M x N is the size of Processed image.

VI. CONCLUSION
In this paper, a new algorithm (MDBUTMF) is proposed
which gives better performance in comparison with MF,
AMF and other existing noise removal algorithms in
terms of Peak signal to noise ratio (PSNR) and Image
Enhancement Factor (IEF). The performance of the
algorithm has been tested at low, medium and high noise
densities on both gray-scale and color images. Even at
high noise density levels the MDBUTMF gives better
results in comparison with other existing algorithms. Both
visual and quantitative results are demonstrated. The
proposed algorithm is effective for salt and pepper noise
removal in images at high noise densities.
In this paper, a We have presented an alternative
implementation of median filtering for arbitrarily large
windows. The architecture is immune to changes in
window size, the area being determined solely by the bit
width. This allows for a flexible window-size that can
change from one calculation to another and we finally
presented the results which are implemented on the
Spartan-3 EDK evolution board.
6.1 Future Scope
In the Transmission of Videos over channel, Video
frames are corrupted by salt and pepper noise (Impulse
Noise), due to faulty communication systems. With this
project we can implement a better filtering technique that
makes the noisy video frames to noise free video frames.
Median filters are the best known nonlinear digital filters
based on order statistics to solve the present problem in
videos. Median filters are known for their capability to
remove salt and pepper noise and preserves the shape.
The noise detection process to discriminate between
uncorrupted pixels and the corrupted pixels prior to
applying non-linear filtering is highly desirable to protect
the signal details of uncorrupted pixels. We proposed A
Modified Decision Based Unsymmetrical Trimmed
Median filter (MDBUTM) algorithm for the restoration of
gray scale, and color video frames that are highly
corrupted by salt and pepper noise.

REFERENCES
[1] J. Astola and P. Kuosmaneen, Fundamentals of

Nonlinear Digital Filtering. Boca Raton, FL CRC,
1997.

[2] H. Hwang and R. A. Hadded, “Adaptive median
filter New algorithms and results,” IEEE Trans.
Image Process., vol. 4, no. 4, pp. 499–502, Apr.
1995.

[3] S. Zhang and M. A. Karim, “A new impulse detector
for switching median filters,” IEEE Signal Process.
Lett., vol. 9, no. 11, pp. 360–363,Nov. 2002.

[4] P. E. Ng and K. K. Ma, “A switching median filter
with boundary discriminative noise detection for
extremely corrupted images,” IEEE Trans. Image
Process., vol. 15, no. 6, pp. 1506–1516, Jun. 2006.

[5] K. S. Srinivasan and D. Ebenezer, “A new fast and
efficient decision based algorithm for removal of
high density impulse noise,” IEEE Signal Process.
Lett., vol. 14, no. 3, pp. 189–192, Mar. 2007.

[6] V. Jayaraj and D. Ebenezer, “A new switching-
based median filtering scheme and algorithm for
removal of high-density salt and pepper noise in
image,” EURASIP J. Adv. Signal Process, 2010.

[7] K. Aiswarya, V. Jayaraj, and D. Ebenezer, “A new
and efficient algorithm for the removal of high
density salt and pepper noise in images and videos,”
in Second Int. Conf. Computer Modeling and
Simulation,2010, pp. 409–413.

[8] G. Eason, B. Noble, and I. N. Sneddon, “On certain
integrals of Lipschitz-Hankel type involving
products of Bessel functions,” Phil. Trans. Roy. Soc.
London, vol. A247, pp. 529–551, April 1955.
(references)

[9] J. Clerk Maxwell, A Treatise on Electricity and
Magnetism, 3rd ed., vol. 2. Oxford: Clarendon,
1892, pp.68–73.

[10] I. S. Jacobs and C. P. Bean, “Fine particles, thin
films and exchange anisotropy,” in Magnetism, vol.
III, G. T. Rado and H. Suhl, Eds. New York:
Academic, 1963, pp. 271–350.

[11] K. Elissa, “Title of paper if known,” unpublished.
[12] R. Nicole, “Title of paper with only first word

capitalized,” J. Name Stand. Abbrev. in press.

